

GRAPHICS

ENGINEERING 2 (SECTION 52006)

Lecture/Labs:

T/Th: 12:00 pm - 1:50 pm and online

Office: PHY-78 Room: PHY-77

Phone: (559)494-3000 ext. 3215

Instructor: Dr. John Heathcote

e-mail: john.heathcote@reedleycollege.edu

Office Hours:

MTW 11:00-11:50 am

Th 10:00-11:50 am

These are my official office hours, but you can find me at many other times! If you see me there, I am available to answer your questions or discuss any topic. Please come by!

Welcome to Engineering Graphics!

I would like to welcome you to ENGR 2, in which you will learn to use the tools of computer-aided drafting (CAD) and solid modeling in order to describe designs of parts and assemblies. This is a fun class from which you will emerge with very marketable skills!

I look forward to working with you in learning this material. If you stay on top of completing your assigned drawings, you will enjoy yourself and learn quite a bit!

Prerequisite: Math 4A **Advisories**: English 125 and 126

Required Text:Introduction to Solid Modeling using SolidWorks 2021, William Howard and
Joseph Musto, McGraw Hill.You do not need to purchase this textbook yourself. It is available for check-out from the library.

Software that will be used in this course:

AutoCAD is a free download, available at

https://www.autodesk.com/education/edu-software/overview?sorting=featured&filters=individual (Downloads are available for both Windows and Mac.)

A student edition of <u>SolidWorks</u> can be downloaded onto your own computer. Details on how to download this software is posted on Canvas.

Computer File Storage: You will be completing one to six computer files during each lab session. You will want a place to store these files for later access. You may use a USB flash drive or a cloud storage location. <u>Do not save documents on the lab computers</u>. Files on lab computers will be regularly deleted.

Online Labs:

A portion of this course is <u>online</u>. That means that outside of the scheduled class-time each week, you are required to spend your own time completing the laboratory assignments. You will need to use certain on-campus computers (PHY-78 or the math center) or download the drawing software onto your own computer. In addition, you can access the Canvas course website for class notes, assignments, and schedules. You will also submit work electronically at this site.

Typical Weekly Schedule (subject to change):

Even though we will meet only twice a week, there will usually be three laboratory assignments each week. The deadlines for each assignment will be clearly stated.

Tuesday Lab ("Lab A"):	Thursday Lab ("Lab B"):	Online Lab ("Lab C"):
 Start assignment 	 Start assignment 	Complete
during class.	during class.	assignments on your
Assignments are due	 Assignments are due 	own.
by Thursday night.	by Sunday night.	 Assignments are due
		by Tuesday night.

Catalog Description: This course covers the principles of engineering drawings in visually communicating engineering designs and an introduction to computer-aided design (CAD). Topics include the development of visualization skills, orthographic projections, mechanical dimensioning and tolerancing practices, and the engineering design process. Assignments develop sketching and 2-D and 3-D CAD skills. The use of CAD software is an integral part of the course.

Grading:	Lab Assignments: Skills Quizzes: Assessments/ Projects: Final Exam	50% 20% 20% 10%
Grading Scale:	A: 90-100% B: 80-89% C: 70-79% D: 60-69% F: <60%	

Lab Assignments: Each week, students must perform drawing activities to learn and practice concepts and techniques in engineering graphics. These drawings will be turned in each week (either electronically or on paper) and reviewed by the instructor.

Lab Grades and Corrections: Every lab drawing/activity will be graded based upon accuracy. After submitting your file, it will be graded and comments will be returned to you. You then have the opportunity to make corrections to your work in order to improve your grade. If you correct all of your errors, you can reach full credit after making corrections. Corrections are due two weeks after the original due date of each lab.

Skills Quizzes: Approximately four skills tests will be given during the term. These quizzes will be held during the regular class period. These will involve computer skills and understanding of engineering graphics concepts.

Assessments and Projects: Assessments and projects will be similar to lab assignments except that <u>corrections will not be allowed</u>. The drawings must be performed accurately the first time that they are submitted. These assignments will be either review assignments to test understanding of previous content or applied projects to test students' ability to apply these ideas to practical work.

Final Exam: A cumulative final exam will be given during finals week. This exam will test students' understanding of concepts from the entire course

Cheating and Plagiarism: <u>All work is to be done by each individual student</u>. Any act involving submission of work that is not your own (this could involve copying files from another student or any other act of deception) will result in penalties to all students involved. These penalties may include a failing grade on that assignment, failing grade for the course, and/or referral to the Dean of Students.

Accommodations for Students with Disabilities:

If you have a verified need for an academic accommodation or materials in alternate media (i.e., Braille, large print, electronic text, etc.) per the Americans with Disabilities Act (ADA) or Section 504 of the Rehabilitation Act, please contact me as soon as possible.

Attendance: If there is a reason that will cause you to miss class, please let me know so that I can make sure you are able to keep up with the course. If you miss more than four class sessions, you may be dropped. Course withdrawals, however, are ultimately the responsibility of the student.

Add Date:	Friday, January 27	
Drop Date:	Friday, March 10	
Holidays:	Monday, January 16	
	Friday-Monday, Feb. 17-20	
	Monday-Friday, April 3-7	
Final:	Thursday, May 18, 12:00-1:50 pm	

Last day to add a course Last day to drop this course Martin Luther King Jr. Day Presidents' Day Holidays Spring Recess Holidays

COURSE OUTCOMES:

Upon completion of this course, students will be able to:

A. graphically represent three-dimensional objects using accepted engineering practices.

B. communicate graphically using computer tools and freehand sketching.

C. design a solution to an engineering problem, using CAD and solid modeling software.

COURSE OBJECTIVES:

In the process of completing this course, students will:

A. use computer-drawing software to geometrically construct two-dimensional shapes.

B. use computer-drawing software to construct multi-view orthographic projections of three-

dimensional objects.

- C. create auxiliary and sectional views of objects.
- D. use proper dimensioning and tolerance techniques to fully define an object.
- E. demonstrate proficiency at freehand technical sketching.
- F. use solid modeling software to represent a three-dimensional object.
- G. design solutions to engineering challenges by use of engineering drawings.

H. apply the principles of orthographic projection, isometrics, and descriptive geometry to the

solution of engineering problems.

Course Schedule (Subject to change):

Week #:	Topics:
1	Introduction to SolidWorks
2	SolidWorks Part modeling
3	Additional Part Modeling Techniques
4	More Solid Modeling / 3D Printing
5	2D CAD Constructions,; Quiz #1
6	More 2D Constructions, Architects', Engineers' scales
7	Blocks, Metric scales, Laser Cutting Project
8	Multi-view Drawings
9	3-D pictorials, Visualization skills
10	SolidWorks Drawing Files and Quiz #2
11	Section Views and Auxiliary Views
12	Auxiliary Views
13	Review/Practice, Quiz #3
14	SW Assemblies, Subassemblies
15	Advanced Assemblies, Assembly Drawings
16	Advanced Assemblies / Project Work
17	Quiz #4 / Project Presentations
18	Final Exam