Text: : Calculus, Anton $11^{\text {th }}$ edition, Wiley
Class meets: MWF, 1/14/19-5/24/19, 1:00-2:20; CCI 206

Prerequisite: Math 5B	Basic Skills Advisories: Eligibility for English 125 and 126

Description

This is the third of three courses in the basic calculus sequence. Topics include solid analytical geometry, three-dimensional vectors, vector valued functions, partial differentiation, multiple integration, line integrals, divergence, Green's, and Stokes' theorems.

Expectations / Responsibilities

Instructor

- Motivate and inspire student success.
- Provide a classroom climate in which the student takes responsibility for learning.
- Provide instruction and model the quality of work to be successful in Math 6.
- Clearly communicate progress in a timely fashion.

Student

- Be the kind of student you would want your child to be.
- Follow the class rule - Be Nice.
- Be in each class on time with full participation from start to finish.
- Check Canvas and study daily.
- Learn the assigned material and seek additional assistance when necessary.
- All written work must be neat, complete, concise and accurate to receive full credit.
- Promptly communicate any class related issues and follow up in person.
- If you miss any class time it may be counted as an absence.
- Please see me at the end of class if you are tardy.

You may be dropped if:

- You violate the class rule.
- You are absent for three consecutive days.
- You miss are absent for a test.
- Your homework average is below 90% on Friday, March 15, 2019.
- Your test average is below 60% on Friday, March $15,2019$.

Important Dates

January 14, 2019	MON	FIRST DAY OF SEMESTER
February 1, 2019	MON	FIRST DROP DEADLINE - Last day to ADD/DROP a class
March 15, 2019	MON	LAST DROP DEADLINE - Last day to DROP.
May 20, 2019	MON	FINAL 1:00-3:00

*Dates are subject to change.

Grading	A $90-100 \%$	B $80-89 \%$	C 70-79\%	D $60-69 \%$
Tests	There will be 5 TESTS. Tests are NOT EQUALLY weighted. Point values per			
80\%	problem will vary. NO TEST RETAKES.			
Homework				
$\mathbf{2 0 \%}$	Homework may be online or handwritten.			

*Grades may be accessed in Canvas.

SPRING 19	MON	TUE	WED	THU	FRI
8:00-9:00		Office Hour Virtual		Office Hour FEM 1E	
11:00-11:50	Math Center FEM 1				Math Center FEM 1
12:00-12:50	Office Hour FEM 1E		Office Hour FEM 1E		Office Hour FEM 1E
1:00-2:20	Math 6 CCI 206		$\begin{gathered} \text { Math } 6 \\ \text { CCI } 206 \\ \hline \end{gathered}$		$\begin{gathered} \text { Math } 6 \\ \text { CCI } 206 \\ \hline \end{gathered}$
3:00-5:00	SEC/Treas Union Office				

TESTING PROCEDURE

1) TEST INSTRUCTIONS will be provided IN-CLASS and/or by ANNOUNCEMENT prior to testing.
2) BE PROMPT and well-prepared to take the test.
3) Follow all in-class instructions.
4) NO PHONES allowed.
5) NO CALCULATORS without prior approval.
6) Tests must be completed in a single sitting before leaving the room.
7) The SCCCD policy regarding ACADEMIC DISHONESTY will be applied when appropriate.

ACADEMIC DISHONESTY

Cheating is the act or attempted act of taking an examination or performing an assigned, evaluated task in a fraudulent or deceptive manner, such as having improper access to answers, in an attempt to gain an unearned academic advantage. Cheating may include, but is not limited to, copying from another's work, supplying one's work to another, giving or receiving copies of examinations without an instructor's permission, using or displaying notes or devices inappropriate to the conditions of the examination, allowing someone other than the officially enrolled student to represent the student, or failing to disclose research results completely.

Plagiarism is a specific form of cheating: the use of another's words or ideas without identifying them as such or giving credit to the source. Plagiarism may include, but is not limited to, failing to provide complete citations and references for all work that draws on the ideas, words, or work of others, failing to identify the contributors to work done in collaboration, submitting duplicate work to be evaluated in different courses without the knowledge and consent of the instructors involved, or failing to observe computer security systems and software copyrights. Incidents of cheating and plagiarism may result in any of a variety of sanctions and penalties, which may range from a failing grade on the particular examination, paper, project, or assignment in question to a failing grade in the course, at the discretion of the instructor and depending on the severity and frequency of the incidents.

NOTE: If you have a verified need for an academic accommodation or materials in alternate media (i.e., Braille, large print, electronic text, etc.) per the Americans with Disabilities Act or section 504 of the Rehabilitation act please contact me as soon as possible.

Please refer to SCCCD policies for guidance on all matters relating to this course.

Objectives

In the process of completing the course, the student will:

1. perform vector operations.
2. determine equations of lines and planes.
3. find the limit of a function at a point.
4. evaluate derivatives.
5. write the equation of a tangent plane at a point.
6. determine differentiability.
7. find local extrema and test for saddle points.
8. solve constraint problems using Lagrange multipliers.
9. compute arc length.
10. find the divergence and curl of a vector field.
11. evaluate two and three dimensional integrals.
12. apply Green's, Stokes', and divergence theorems.

Course Outline

A. Three Dimension Space, Vectors

1. Three-dimensional Cartesian coordinates
2. Sketching of cylindrical surfaces
3. Vectors
4. Dot, cross, and triple products and projections
5. Planes and lines
6. Quadric surfaces
7. Spherical and cylindrical coordinates
B. Vector Valued Functions
8. Introduction to vector valued functions
9. Limits, derivatives, integrals, change of parameter and arc length
10. Unit tangent, normal, and binormal vectors
11. Curvature
12. Motion along a curve-position, velocity, and acceleration
C. Partial Derivatives
13. Functions of several variables, level curves and surfaces
14. Limits, continuity, partial derivatives, and differentiability
15. Chain rules for partial derivatives
16. Normals to surfaces, tangent lines and tangent planes
17. Directional derivatives and gradients
18. Local and global extrema and saddle points
19. Lagrange Multiplier Method
D. Multiple Integrals
20. The double integral, rectangular regions, and non-rectangular regions
21. Double integrals in polar coordinates'
22. Applications for double integrals
23. Surface area in polar coordinates
24. Triple integration
25. Centroids and center of mass
26. Triple integrals in cylindrical and spherical coordinates
27. Change of variables theorem
E. Topics in Vector Calculus
28. Vector fields, divergence and curl
29. Line integrals
30. Independence of path and conservative vector fields
31. Green's Theorem
32. Surface Integrals
33. Applications of Surface Integrals
34. Divergence Theorem
35. Stokes' Theorem
