

Fall 2019

Engineering Materials Laboratory Engineering 4L – Section #52330

Instructor:Dr. John HeathcoteLab Times, Location: Tuesdays, 2:00-4:50pm, PHY-70Office:Reedley College, FEM-1B (in Math Center, in FEM Building)Phone:(559) 638-0300 ext. 3215e-mail:john.heathcote@reedleycollege.eduOffice Hours:9:00-10:30am

- T 9:30-10:00am (in PHY-70)
- W 9:00-10:30am
- Th 9:30-10:00am (inPHY-70)
- F 9:00-10:00am

If you cannot make regular office hours, feel free to make an appointment.

Required Text:None (However, the topics of this laboratory course will coincide with the topics
covered in ENGR 4 and in its textbook, Callister, William D. and Rethwisch, David G.,
Fundamentals of Materials Science and Engineering, An Integrated Approach, 5th
Edition, Wiley, 2015.

Prerequisites: Catalog Description:		CHEM 1A, PHYS 4A		
		This is a laboratory course in which students investigate the structure, properties, and performance of engineering materials, with topics including crystal structures, metallography, cold working and heat treatment, mechanical behavior, ductile and brittle failure, toughness, fatigue, corrosion, and properties of semiconductor devices.		
Grading:	70% 10% 20%	Laboratory Exercises and Reports Presentation on a Topic in Materials Engineering Final Exam		

Laboratory Exercises and Reports: This is a laboratory course, so the major portion of the grade will be based upon the performance of labs and the reports that go along with these labs. Labs need to be performed on the week that they are scheduled. It is important that you are able to write about your experimental work. Because of this, each week you will have a follow-up written assignment. Sometimes, it will involve rather informal answers to questions. Other times, it will be a more formal lab report. This is to help prepare you for lab reports at the university level.

Presentation on a Topic in Materials Engineering: During the semester, you will research a topic in materials engineering and give a presentation to the class. Specific requirements for this presentation and your assigned presentation date will be announced during the semester.

Final Exam: During finals week, a comprehensive final exam will be given. This exam may cover both lab techniques and calculation problems.

Grading Scal	le: 90-100% 80-89% 70-79% 60-69% <60%	A B C D F	
Add Date: Drop Date: Holidays:	Friday, August 30 Friday, October 11 Monday, September 2 Monday, November 11 Thursday-Friday, Novem		Last day to add a course Last day to drop this course Labor Day Veterans' Day Thanksgiving Holiday
Final:	Thursday, December 12		

Accommodations for Students with Disabilities:

If you have a verified need for an academic accommodation or materials in alternate media (i.e., Braille, large print, electronic text, etc.) per the Americans with Disabilities Act (ADA) or Section 504 of the Rehabilitation Act, please contact me as soon as possible.

Course Outline: (subject to change)

Lab Dates	Topics	
Tuesday, August 13 th	Atomic Bonding and Metal Crystal Structures	
Tuesday, August 20 th	Ceramic Crystal Structures	
Tuesday, August 27 th	Polymer Structures	
Tuesday, September 3 rd	Structural Imperfections	
Tuesday, September 10 th	Hardness and Diffusion	
Tuesday, September 17 th	Tensile Properties of Metals	
Tuesday, September 24 th	Mechanical Properties of Ceramics	
Tuesday, October 1 st	Steel Heat Treatments	
Tuesday, October 8th	Failure – Fracture and Fatigue	
Tuesday, October 15 th	Failure - Creep	
Tuesday, October 22 nd	Phase Diagrams	
Tuesday, October 28 th	Mechanical Properties of Polymers	
Tuesday, November 5 th	Iron-Carbon Kinetics	
Tuesday, November 12 ^h	Electrical Resistivity / Presentations	
Tuesday, November 19 th	Semiconductors and Capacitance / Presentations	
Tuesday, November 26 th	Recycling Plant Tour	
Tuesday, December 3 rd	Materials Processing / Presentations	
Thursday, December 12 th	Final Exam	

COURSE OUTCOMES:

Upon completion of this course, students will be able to:

- A. operate materials testing equipment and gather and analyze relevant data in order to measure material properties and/or evaluate processing treatments.
- B. write laboratory reports that communicate the collection, analysis, and interpretation of experimental data according to professional engineering standards.

COURSE OBJECTIVES:

In the process of completing this course, students will:

- A. model various crystal structures found in metals and nonmetals
- B. model crystal imperfections and analyze their effect on material properties
- C. measure stress-strain behavior for metals, polymers and ceramics
- D. investigate ductile and brittle fracture and identify the type of failure from fracture surfaces
- E. determine the relative toughness of various materials through impact testing
- F. evaluate fatigue behavior of metals
- G. analyze equilibrium phase diagrams and predict phases and microstructure present under certain conditions
- H. investigate the effect of various materials processing techniques (such as strain hardening, recrystallization, and precipitation hardening) on the structure and properties of metals
- I. assess the corrosion resistance of various materials under certain environmental conditions
- J. measure the behavior of semiconductor devices

LAB CONTENT:

- A. Materials Overview
 - 1. Classification of Materials
 - 2. Properties of Materials
 - 3. Materials Usage
- B. Crystal Structures
 - 1. Modeling
 - 2. Density and Packing Factor
 - 3. Crystal Imperfections

C. Mechanical Behavior

- 1. Stress Strain Behavior
- 2. Elastic vs. Plastic Deformation
- 3. Ductile vs. Brittle Fracture
- 4. Hardness Testing
- 5. Toughness and Impact Testing
- 6. Fatigue loading and behavior

D. Phase Diagrams

- 1. Interpreting phase diagrams
- 2. Experimental determination of phase diagrams
- 3. Prediction of phases and microstructures
- E. Metallography
 - 1. Metallurgical Microscopy
 - 2. Sample Preparation
 - 3. Grain size measurements and characterization
- F. Cold Working and Heat Treatment
 - 1. Effect of Cold Working on structure and properties
 - 2. Effect of Heat Treatment on structure and properties
 - 3. Evaluation of Materials Processing Treatments
 - i. Strain Hardening
 - ii. Recrystallization
 - iii. Precipitation Hardening
- G. Corrosion Resistance of various materials
- H. Electrical Properties of Materials
 - 1. Conductivity
 - 2. Properties of Semiconductor Devices