Electric Circuit Analysis with Lab

Spring 2014

Engineering 6 – Section #52837

		6 V	20 kΩ 	40 k		
Instructor:	Dr. John Heathcote Cla		re/Lab: re/Lab:	M W	1:00-3:50 pm 1:00-3:50 pm	PHY-70 LFS-17
Office:	FEM-1B, in the Math Stu	dy Center				
Phone:	638-3641 ext. 3215					
e-mail:	john.heathcote@reedleycoll	ege.edu				
Office Hours:	Monday 11:00 am - Wednesday 11:00 am - Thursday 11:00 am - If you cannot make regula	1:50 pm 1:50 pm ar office hours, fe				
Required Text:	Fundamentals of Electric Circuits, 5th Edition, Alexander and Sadiku, McGraw Hill					

Catalog Description: An introductory course in the analysis of DC and AC linear circuits containing resistors, inductors, capacitors, independent and dependent voltage and current sources, and operational amplifiers. Topics include Ohm's Law, Kirchhoff's Laws, loop and mesh analysis, Thevenin's and Norton's Theorems, superposition, natural and forced response in first and second order circuits, phasor analysis, resonance, and AC steady-state power.

Prerequisite: Physics 4B **Corequisite**: Math 7 **Advisories**: Eligibility for English 125 and 126

Grading:	60%	Tests
	15%	Final Exam
	15%	Homework, Classwork and Quizzes
	10%	Laboratory Performance and Reports
Grading Scale	e:	A: 90-100%
		B: 80-89%
		C: 70-79%
		D: 60-69%
		F: <60%

Tests: There will be four tests given during the term. Each test will typically cover the chapters that were immediately presented during that unit. The rules for allowed notes will be declared ahead of time. If a student cannot

take a test during a scheduled time (for whatever reason), he/she must contact the instructor (by email, phone, or in person) by the start of the test.

Final Exam: A cumulative final exam will be given during exam week. It will cover all of the topics presented during the semester.

Homework: Homework will be assigned in order to practice the problem-solving skills taught in class. To receive full credit, the assignments should be performed neatly and submitted on time. <u>Draw the circuit diagram and show your work for each problem.</u>

Class Work and Quizzes: In-class work problems may be assigned and completed during some class periods. These will be problems related to homework problems to further students' understanding and practice problem-solving skills. Quizzes may also be given to test students' understanding and problem-solving ability.

Laboratory Performance and Reports: This course includes a laboratory section during which we will perform experiments to complement the coursework for the class. The laboratory grade will be based on performance during the lab experiment and some required written reports. Grades for laboratory reports may be based on the quality of your experimental work, the analysis of the experiment, the accuracy of your experimental calculations, and your ability to set up circuit equipment. Occasional lab quizzes will be given to test students' ability to use the laboratory equipment.

Late Work and Make-up Tests: Homework and laboratory reports should be submitted on time. If there is a valid reason that the work must be turned in late, please inform the instructor ahead of time. Otherwise, late work will not receive full credit. Make-up tests will only be arranged upon prior approval. If you will know that you will miss a test, you MUST let the instructor know beforehand. If you are sick on the day of a test, you must call the instructor on that day.

Attendance: Attendance in class and at the lab sessions is mandatory. Class attendance will be recorded. If you miss more than four (4) class sessions, you may be dropped.

Make-Up Labs: If you must miss a lab session and want to make up the points, you will need to make up the laboratory work at another time. You will have to work around the instructor's schedule in order to find a time when he can supervise the laboratory work.

Add Date:	Friday, January 31 st	Last day to add a course
Drop Date:	Friday, March 14 th	Last day to drop this course
Holidays:	Monday, January 20 th	Martin Luther King Jr. Day
	Friday-Monday, Feb. 14-17 th	Presidents' Day Holidays
	Monday-Friday, April 14 th -18 th	Spring Recess Holidays
Final:	Wednesday, May 21 st 1:00 pm	Final Exam

Accommodations for Students with Disabilities:

If you have a verified need for an academic accommodation or materials in alternate media (i.e., Braille, large print, electronic text, etc.) per the Americans with Disabilities Act (ADA) or Section 504 of the Rehabilitation Act, please contact me as soon as possible.

Blackboard Course Site:

A Blackboard course website is set up for this course. You can look here for class notes, assignments, schedules, or posted solutions. It can be accessed via the Blackboard link on the Reedley College home page. Your user name is your seven digit student number. If you have never changed it, your password is the same.

Lecture/Lab Schedule (subject to change):

Week 1	Chapters 1 and 2	Introductory Lab
Week 2	Chapters 2	No Lab (MLK, Jr. Day)
Week 3	Chapter 3	Unknown Resistance Lab
Week 4	Chapter 4	Voltage Divider Lab
Week 5	Chapter 4	Test #1
Week 6	Chapter 5	No Lab (Presidents' Day)
Week 7	Chapters 5 and 6	Linearity and Superposition Lab
Week 8	Chapters 6 and 7	Op Amp Lab
Week 9	Chapter 7	Test #2
Week 10	Chapter 8	Energy Storage Lab
Week 11	Chapter 8	First Order Circuit Lab
Week 12	Test #3	2 nd Order Circuit Lab
Week 13	Chapter 9	Phasor Lab
	Spring Break	
Week 14	Chapter 10	AC Circuit Lab
Week 15	Chapter 11	Black Box Lab
Week 16	Chapter 11	TBA
Week 17	Test #4	
Week 18	Finals Week	Final Exam

COURSE OUTCOMES:

Upon completion of this course, students will be able to:

- A. Determine unknown electrical quantities using the basic v-i characteristic equations of electrical components.
- B. Solve DC circuit problems using a variety of analytical techniques.
- C. Solve AC circuit problems using phasor methods.
- D. Solve steady-state AC power problems.
- E. Use basic electrical test and analysis equipment in a laboratory setting.
- F. Plan, execute, and write reports for laboratory experiments.

COURSE OBJECTIVES:

In the process of completing this course, students will:

- A. Derive and use the v-i (voltage-current) characteristic equations for resistors, operational amplifiers, and independent and dependant power sources.
- B. Solve DC electrical circuit analysis problems using Kirchhoff's voltage and current laws.
- C. Apply series and parallel resistor theorems.
- D. Apply current and voltage division theorems.
- E. Solve DC electrical circuit analysis problems using the analysis techniques of mesh current and node voltage.
- F. Solve DC electrical circuit analysis problems using the analysis techniques of superposition, Thevenin's Theorem, and Norton's Theorem.
- G. Derive and use the v-i characteristic equations for energy storage devices (capacitors and inductors).
- H. Solve first order circuit problems involving energy storage devices (both natural and forced response problems).
- I. Solve second order circuit problems involving energy storage devices (both natural and forced response problems).
- J. Learn and use phasor analysis techniques for solving AC steady-state circuit problems.
- K. Apply KVL, KCL, node voltage, mesh current, Thevenin's Theorem, Norton's Theorem, and superposition analysis techniques to solve AC steady-state circuit problems.
- L. Calculate power quantities in AC steady-state circuit problems using the appropriate equations and the power triangle.
- M. Calculate electrical quantities in three-phase AC electrical circuits.
- N. Learn to competently use electrical laboratory test and analysis equipment.