Course Description: This course is an analytic and comprehensive study of algebra, analytic geometry and trigonometry designed to prepare students for calculus. Topics include linear, quadratic, and rational equations and inequalities, functions and their graphs, exponential and logarithmic functions, systems of linear and quadratic equations and inequalities, matrices and determinants, conic sections, angles, trigonometric and inverse trigonometric functions, right and oblique triangles, graphs, identities, trigonometric equations, vectors, polar coordinates, DeMoivre's theorem and applications.

Basic Skills Advisories: Eligibility for ENGL 125 AND ENGL 126
Subject Prerequisites: MATH 102 and MATH 103 or equivalent
OPTIONAL TEXT: Algebra and Trigonometry: An Early Functions Approach Plus MyMathLab Student Access Kit by Blitzer © 2010 I ISBN-10: 0321614739

REQUIRED NOTES: Math 4C Notes are to be bought at the Bookstore.
Required Web Access: MyMathLab
ATTENDANCE: Students are expected to attend all class meetings, be on time, and be in class the entire class session. Calling me to tell me you will be absent does not excuse you. STUDENTS LEAVING CLASS BEFORE THE END OF CLASS WILL BE COUNTED AS BEING ABSENT! Three (3) absences may result in a drop from the course. However, if you decide to drop the course, it is your responsibility to make the drop official in the Administrations and Records office or else possibly receive a grade of \mathbf{F}.

Behavioral Standards: Your classmates and I would greatly appreciate that students in the class take care of any personal needs (i.e., using the restroom, getting a drink, sharpening a pencil) before class begins. Please turn your phone off when entering the class. You may not use your phone as a calculator. I would appreciate that you not bring guests to class.

NOTE: \quad The drop deadline is October 15, 2010.
TARDIES: Students are expected to be on time. It is distracting, rude and unfair to fellow classmates and to the instructor when a student is late. If you are not present when roll is taken you will be counted as absent.

HOMEWORK: Homework is done using CourseCompass on the computer. NO LATE HOMEWORK WILL BE ACCEPTED! Students must be enrolled and satisfactorily completing homework by the end of the first week or they will be dropped. When a student has not satisfactorily completed 6 homework assignments they will be dropped.

TESTS: There are no makeup exams for missed tests.

FINAL EXAM: A two-hour comprehensive final exam worth 1 test will be given at the end of the semester during finals week. You are required to take the final exam, however the final exam will replace your lowest test score.
Students are required to participate in all class discussions and activities. You may not start the homework during class. You may not study for another class or read a book during class.

GRADING:

- Homework: There will be 8 chapter/sections of homework. Each section will be worth 3\%. All of your homework scores will be worth the same percentage. So homework worth 10 points and homework worth 15 points will count the same.
- Online Tests: Each online test will be 1% of the grade.
- In Class Tests: All of your test percentages will be averaged and will count as 68% of your grade.
- Your homework grade is worth 24% of your grade. Your online test grade is worth 8% of your grade and the in class test grade is worth 68% of your grade

Percent of Total Points		Grade
	$89-100$	
$78-88$		A
$65-77$		B
$55-64$		C
$0-54$		

WHERE TO FIND YOUR GRADE:

Available at http://sc.webgrade.classmanager.com/ReedleyCollege/ Your class will be identified by schedule number. Username and password is sent to your email that you have on record with Blackboard.

SPECIAL NEEDS REQUESTS: If you have a verified need for an academic accommodation or materials in alternate media (i.e., Braille, large print, electronic text, etc.) per the Americans with Disabilities Act (ADA) or Section 504 of the Rehabilitation Act, please contact me as soon as possible.

Academic Dishonesty

Students at Reedley College are entitled to the best education that the college can make available to them, and they, their instructors, and their fellow students share the responsibility to ensure that this education is honestly attained. Because cheating, plagiarism, and collusion in dishonest activities erode the integrity of the college, each student is expected to exert an entirely honest effort in all academic endeavors. Academic dishonesty in any form is a very serious offense and will incur serious consequences.

Cheating is the act or attempted act of taking an examination or performing an assigned, evaluated task in a fraudulent or deceptive manner, such as having improper access to answers, in an attempt to gain an unearned academic advantage. Cheating may include, but is not limited to, copying from another's work, supplying one's work to another, giving or receiving copies of examinations without an instructor's permission, using or displaying notes or devices inappropriate to the conditions of the examination, allowing someone other than the officially enrolled student to represent the student, or failing to disclose research results completely.

Plagiarism is a specific form of cheating: the use of another's words or ideas without identifying them as such or giving credit to the source. Plagiarism may include, but is not limited to, failing to provide complete citations and references for all work that draws on the ideas, words, or work of others, failing to identify the contributors to work done in collaboration, submitting duplicate work to be evaluated in
different courses without the knowledge and consent of the instructors involved, or failing to observe computer security systems and software copyrights.

Incidents of cheating and plagiarism may result in any of a variety of sanctions and penalties, which may range from a failing grade on a particular examination, paper, project, or assignment in question to a failing grade in the course, at the discretion of the instructor and depending on the severity and frequency of the incidents.

Course Objectives

A. graph linear, quadratic and rational equations and inequalities.
B. identify the characteristics of a function, both from its equation and its graph and perform operations on functions once identified.
C. graph and solve quadratic, polynomial and rational functions and apply these skills to solve direct, inverse and combined variation problems.
D. set up and solve exponential and logarithmic functions.
E. solve systems of both linear and non-linear equations and inequalities in two and three variables.
F. use matrices to solve linear systems, perform matrix operations, solve matrix equations through the use of multiplicative inverses and use determinants and Cramer's Rule to solve linear systems.
G. identify and graph the conic sections (Ellipse and Circles, Parabola, Hyperbola).
H. evaluate trigonometric function values of both acute and obtuse angles using both special angle values and calculator values.
I. use the unit circle to determine the radian measure of angles and convert from radian to degree measure and vice versa.
J. derive the basic trigonometric identities, sum and difference formulas, and double-angle and halfangle formulas.
K. use the Law of Sines and Law of Cosines to solve both acute and obtuse triangles.
L. use polar coordinates to represent points and to graph polar equations.
M. represent vectors in the rectangular coordinate system and identify their magnitude and direction; perform operations (addition, subtraction, scalar multiplication and dot product) with vectors.

Course Outcomes

Upon completing this course students will demonstrate the ability to:
A. apply the concepts graphing linear, quadratic and rational equations and inequalities to model realworld phenomena including but not limited to life expectancy, simple interest, heart rates, and velocity and height of a projectile.
B. perform transformations on various functions, find the inverse of a given function and combine functions to make composite functions.
C. apply the concepts of direct, inverse and combined variation to model real-world phenomena including but not limited to the relationships between two or more quantities such as an aircraft's speed and its Mach number, Earth's gravitational force on an object and the object's distance from the center of the Earth and a person's body-mass index and their height.
D. apply the concepts of exponential and logarithmic functions to model real-world phenomena including but not limited to population growth rates, Carbon-14 dating of ancient artifacts and the spread of diseases in populations.
E. apply the concepts of solving systems and linear programming to model classic management science problems of maximizing profits and minimizing costs.
F. apply the concept of a matrix to understand and model digital images on a camera or computer screen.
G. use the conic section curves to help model real-world phenomena including but not limited to ripples in water, the path the planets travel in the solar system and the shape of satellite tracking antennae.
H. apply the trigonometric functions to solve for the parts (angles, sides) of a right triangle to solve classic surveying problems including but not limited to angle of elevation, angle of depression, height of a tree or building and distance across a river or valley.
I. apply the concept of radian measure to graph the trigonometric functions and use some of these graphs to model real-world phenomenon including but not limited to ocean tidal patterns, biorhythms and number of hours of daylight on a given day of the year in a given city of the world.
J. use the trigonometric identities and special formulas to simplify trigonometric expressions and solve trigonometric equations.
K. use the Law of Sines and Law of Cosines to solve application problems including but not limited to determining the bearing and speed of a ship, determining the location of a fire and its distance from a specific fire station and the area of plots of land which can't be measured easily.
L. apply the concept of polar coordinates and DeMoivre's Theorem to represent complex numbers in polar form.
M. use vectors to model real-world phenomenon including but not limited to forces on an object, work done by a crane in lifting a boulder to a certain height, and the force which needs to be applied to a car's brakes to keep it from rolling down a hill.

COURSE CONTENT OUTLINE:

A. Equations, Inequalities and Mathematical Models

1. Graphs and graphing utilities
2. Linear Equations
3. Formulas and Applications
4. Complex Numbers
5. Quadratic Equations
6. Other Types of Equations
7. Linear Inequalities
8. Quadratic and Rational Inequalities
B. Functions and Graphs
9. Lines and Slope
10. Distance and Midpoint Formulas; Circles
11. Basics of functions
12. Graphs of functions
13. Transformations of functions
14. Combinations of functions; Composite functions
15. Inverse functions
C. Polynomial and Rational Functions
16. Quadratic functions
17. Polynomial functions and their graphs
18. Dividing polynomials; Remainder and Factor Theorems
19. Zeros of Polynomial Functions
20. Rational Functions and their graphs
21. Modeling using Variation
D. Exponential and Logarithmic Functions
22. Exponential functions
23. Logarithmic functions
24. Properties of Logarithms
25. Exponential and Logarithmic Equations
26. Modeling with Exponential and Logarithmic Functions
E. Systems of Equations and Inequalities
27. Systems of Linear Equations in two variables
28. Systems of Linear Equations in three variables
29. Systems of Nonlinear Equations in two variables
30. Systems of Inequalities
31. Linear Programming
F. Matrices and Determinants
32. Matrix solutions to Linear Systems
33. Inconsistent and Dependent Systems and their applications
34. Matrix Operations and their applications
35. Multiplicative Inverses of Matrices and Matrix Equations
36. Determinants and Cramer's Rule
G. Conic Sections and Analytic Geometry
37. The Ellipse and Circles
38. The Hyperbola
39. The Parabola
40. Rotation of Axes
H. Trigonometric Functions
41. Angles and their measure
42. Right Triangle Trigonometry
43. Trigonometric Functions of any angle
44. Trigonometric Functions of Real Numbers; Periodic Functions
45. Graphs of Sine and Cosine Functions
46. Graphs of Other Trigonometric Functions
47. Inverse Trigonometric Functions
48. Applications of Trigonometric Functions
I. Analytic Trigonometry
49. Verifying trigonometric identities
50. Sum and Difference Formulas
51. Double-Angle and Half-Angle Formulas
52. Trigonometric Equations
J. Additional Topics in Trigonometry
53. The Law of Sines
54. The Law of Cosines
55. Polar Coordinates
56. Graphs of Polar Equations
57. Complex Numbers in Polar Form; DeMoivre's Theorem
58. Vectors
59. The Dot Product

Important Dates

August 16	Class Begins
September 6	Labor Day
October 15	Last day to drop
November 11	Veterans Day
November 25-26	Thanksgiving
December 13(Monday)	Final Exam 12:00-1:50

The final is a test. Be sure you plan to be there!

