CREDIT COURSE OUTLINE

I. COVER PAGE

(1) MFGT 92
(2) Motor Controls 2

Title
(3) 2

(8)Classification:			
		Degree applicable:	X
		Non-degree applicable:	
		Basic skills:	
(9)RC Fulfills AS/AA degree requirement: (area)			
General education category:			
Major: Maintenance Mechanic			
Certificate of:		Maintenance Mechanic	
Certificate in:			
(10)CSU		Baccalaureate:	X
(11)Repeatable: (A course may be repeated three times)			0
(12)C-ID:			
Proposed Start Date:			Fall 2012

(12) Catalog Description:

The study of intermediate motor controls found in commercial/manufacturing use. Methods that are used to diagram, wire, operate, and troubleshoot intermediate motor controls and accessories in a safe manner.
II. COURSE OUTCOMES:
(Specify the learning skills the student demonstrates through completing the course and link critical thinking skills to specific course content and objectives.)

Upon completion of this course, students will be able to:
I. Identify intermediate and advanced motor and control systems within a manufacturing environment.
II. Design and diagram the integration of motor and control system components.
III. Organize and assemble motor and control system components into working control systems.

III. COURSE OBJECTIVES:

(Specify major objectives in terms of the observable knowledge and/or skills to be attained.)
In the process of completing this course, students will:
I. Identify types of motors and their characteristics.
II. Identify control system components such as solid state devices, sensing devices, and motor controls.
III. Design motor control circuits such as start stop circuits, holding circuits, and motor overload circuits.
IV. Diagram and document motor control circuits that have been designed.
V. Assemble motor control system components using safe practices into working, fully operational subsystems in a lab environment. IV. COURSE OUTLINE:

Lecture Content:

1. Review
a. Electrical fundementals
b. Using test instruments
c. Safety
d. Basic motor theory
2. AC and DC motor drives
a. Definitions
b. Principles of operation
c. Components
d. Application
3. Integrating Solid State Devices
a. Interfacing discrete devices
b. Interfacing sensors
c. Timers and counters
4. Relays and solid state starters
a. Differentiating relays, contactors, and starters
b. Applied control circuits
5. Sensing devices
a. Temperature
b. Pressure
c. Magnetic
d. Level

Lab Content:

1. Integration process
a. Designing circuits
b. Simulating circuits
c. Wiring circuits
2. Testing circuits
a. Measuring control voltage
b. Measuring control current
3. Troubleshooting
a. Skills development
b. Process of troubleshooting
c. Input check
d. Output check

v. APPROPRIATE READINGS

Reading assignments may include but are not limited to the following:

I. Sample Text Title:

1. Recommended - Hart, G.V., Hart, S. Ugly's Electrical References, 2011 Edition, ed. 3rd Jones \& Bartlett Learning, 2011,
2. Recommended - Rockis, G.J., Mazur, G.A. Electrical Motor Controls for Integrated Systems, ed. 4th American Technical Publishers, 2009,
3. Recommended - Rockis, G.J., Mazur, G.A.. Electrical Motor Controls for Integrated Systems Workbook, ed. 4th American Technical Publishers, 2009,
II. Other Readings

Global or international materials or concepts are appropriately included in this course Multicultural materials and concepts are appropriately included in this course

If either line is checked, write a paragraph indicating specifically how global/international and/or multicultural materials and concepts relate to content outline and/or readings.
VI. METHODS TO MEASURE STUDENT ACHIEVEMENT AND DETERMINE GRADES:

Students in this course will be graded in at least one of the following four categories. Please check those appropriate. A degree applicable course must have a minimum of one response in category A, B, or C .

A. WritingCheck either 1 or 2 below		
	1. Substantial writing assignments are required. Check the appropriate boxes below and provide a written description in the space provided.	
X	2. Substantial writing assignments are NOT required. If this box is checked leave this section blank. For degree applicable courses you must complete category B and/or C.	
	a) essay exam(s)	d) written homewor
	b) term or other paper(s)	e) reading reports
	c) laboratory report(s)	f) other (specify)

Required assignments may include but are not limited to the following:

B. Problem Solving

Computational or non-computational problem-solving demonstrations, including:

X	a) exam(s)	X	d) laboratory reports
X	b) quizzes	X	e) field work
X	c) homework problems		f) other (specify):

Required assignments may include but are not limited to the following:
Troubleshoot: Give steps to troubleshoot a hardwired holding circuit that is not holding the contactor in.
Answer: Verify correct coil voltage. Verify wiring to aux contact. Check for loos wires. Verify against wiring diagram.

C. Skill demonstrations, including:			
X	a) class performance(s)	X	c) performance exams(s)
X	b) field work		d) other (specify)

Required assignments may include but are not limited to the following:
Draw a motor start stop circuit including a holding circuit, and wire the same on the electrical simulator.
D. Objective examinations including:

X	a) multiple choice	X	d) completion
X	b) true/false		e) other (specify):
X	c) matching items		

COURSE GRADE DETERMINATION:

Description/explanation: Based on the categories checked in A-D, it is the recommendation of the department that the instructor's grading methods fall within the following departmental guidelines; however, the final method of grading is still at the discretion of the individual instructor. The instructor's syllabus must reflect the criteria by which the student's grade has been determined. (A minimum of five (5) grades must be recorded on the final roster.)

If several methods to measure student achievement are used, indicate here the approximate weight or percentage each has in determining student final grades.
Home Work 25\% Lab work 25\% Quizzes 25\% Final 25\%

VII. EDUCATIONAL MATERIALS

For degree applicable courses, the adopted texts, as listed in the college bookstore, or instructor-prepared materials have been certified to contain college-level materials.

Validation Language Level (check where applicable):

College-Level Criteria Met	
YES	NO
$\frac{\mathrm{X}}{\mathrm{X}}$	-
$\frac{\mathrm{X}}{\mathrm{X}}$	$=$

Textbook
Reference materials
Instructor-prepared materials
Audio-visual materials
Indicate Method of evaluation:
Used readability formulae (grade level 10 or higher)
Text is used in a college-level course
Used grading provided by publisher
Other: (please explain; relate to Skills Levels)

Computation Level (Eligible for MATH 101 level or higher where applicable)

Content
Breadth of ideas covered clearly meets college-level learning objectives of this course
Presentation of content and/or exercises/projects:
Requires a variety of problem-solving strategies including inductive and deductive reasoning.
Requires independent thought and study
Applies transferring knowledge and skills appropriately and efficiently to new situations or problems.
List of Reading/Educational Materials
Recommended - Hart, G.V., Hart, S. Ugly's Electrical References, 2011 Edition, ed. 3rd Jones \& Bartlett Learning, 2011,
Recommended - Rockis, G.J., Mazur, G.A. Electrical Motor Controls for Integrated Systems, ed. 4th American Technical Publishers, 2009,
Recommended - Rockis, G.J., Mazur, G.A.. Electrical Motor Controls for Integrated Systems Workbook, ed. 4th American Technical Publishers, 2009,

[^0]| | This course requires special or additional library materials (list attached).
 This course requires special facilities: |
| :---: | :--- |
| X | Manufacturing Electrical Lab. | Manufacturing Electrical Lab.

Attached Files:
MFGT 92 Prereq Justification
MFGT 92 Objectives Corrections
Manufacturing Pathways

BASIC SKILLS ADVISORIES PAGE The skills listed are those needed for eligibility for English 125, 126, and Math 201. These skills are listed as the outcomes from English 252, 262, and Math 250. In the right hand column, list at least three major basic skills needed at the beginning of the target course and check off the corresponding basic skills listed at the left.

```
Check the appropriate spaces.
    Eligibility for Math 201 is advisory for the target course.
    Eligibility for English 126 is advisory for the target course.
    Eligibility for English 125 is advisory for the target course.
If the reviewers determine that an advisorv or advisories in Basic Skills are all that are necessarv for success in the target course, stop
here, provide the required signatures, and forward this form to the department chair, the appropriate associate dean, and the
curriculum committee.
```


REQUISITES

Prerequisite -- MFGT 91 Motor Control 1

- Identify electric motor and control systems within a manufacturing environment.
- Diagnose electric power transmission problems in a manufacturing environment.
- Identify types of motors and their characteristics.
- Identify control system components such as solid state devices, sensing devices, and motor controls.
- Design motor control circuits such as start stop circuits, holding circuits, and motor overload circuits.
- Diagram and document motor control circuits that have been designed.

ESTABLISHING PREREOUISITES OR COREOUISITES

Every prerequisite or corequisite requires content review plus justification of at least one of the seven kinds below. Prerequisite courses in communication and math outside of their disciplines require justification through statistical evidence. Kinds of justification that may establish a prerequisite are listed below.

Check one of the following that apply. Documentation may be attached.
Significant statistical evidence indicates that the absence of the prerequisite course is related to unsatisfactory performance in the target course.
Justification: Indicate how this is so.
The health or safety of the students in this course requires the prerequisite. Justification: Indicate how this is so.
X __The prerequisite course is part of a sequence of courses within or across a discipline.
The prerequisite is required in order for the course to be accepted for transfer to the UC or CSU systems.
Justification: Indicate how this is so.
The prerequisite/corequisite is required by law or government regulations.
Explain or cite regulation numbers:
The safety or equipment operation skills learned in the prerequisite course are required for the successful or safe completion of this course.
Justification: Indicate how this is so.
The safety or equipment operation skills learned in the prerequisite course are required for the successful or safe completion of this course.
Justification: Indicate how this is so.
Three CSU/UC campuses require an equivalent prerequisite or corequisite for a course equivalent to the target course:
Justification:

Enrollment in courses or blocks of courses may be limited based on performance, honors, or other performance based criteria. Be mindful of the disproportionate impact the limitation will have on specific groups of students. It is important to determine if the limitation will disproportionately keep under-represented students from enrolling in the course or block of courses.

Describe the reasons for limiting the enrollment.

```
Course Designator: MFGT 92
Course Title(s): Motor Controls 2
Rationale for Limiting Enrollment:
    0
```


[^0]: Comments:

