CREDIT COURSE OUTLINE

I. COVER PAGE

(1) ASTRO 10

(2) INTRODUCTION TO ASTRONOMY
 (3) 4

Number

II. COURSE OUTCOMES:
(Specify the learning skills the student demonstrates through completing the course and link critical thinking skills to specific course content and objectives.)

Upon completion of this course, students will be able to:
I. solve simple algebraic problems that apply to astronomy topics.
II. demonstrate an understanding of publications at the college level about introductory astronomy topics through written research paper.
III. develop and apply reasoning skills regarding the science of the universe to solve mathematical and non mathematical problems in astronomy.

III. COURSE OBJECTIVES:

(Specify major objectives in terms of the observable knowledge and/or skills to be attained.)

In the process of completing this course, students will:
I. learn introductory astronomy vocabulary.
II. learn to apply basic algebra skills to astronomical problems.
III. learn to understand publication at the college level about introductory astronomy topics through written research paper.
IV. learn to conduct simple laboratory experiments and run simulation programs on computers that enhance their understanding of basic astronomical phenomenon.
V. develop sound reasoning skills as they are applied in astronomy.
IV. COURSE OUTLINE:

Lecture Content:

A. The mathematics you need for this class

1. Review of exponents and logarithms
2. Review of basic graph reading skills
3. Review of the order of operations
B. History of Astronomy
4. The earliest cosmological ideas
5. The early Greek philosophers
6. The theory of Epicycles
7. Ptolemy
8. Astronomy of Persia and Oriental Culture
9. Copernicus
10. Galileo
11. Kepler
12. Observational Astronomy
13. Non observational astronomy
C. The scientific method as it applies to this class
14. Observation of phenomenon
15. Proposition of theory
16. Data acquisition
17. Data analysis
18. Peer review
D. Our solar system
a. Planets
19. Inner rocky planets
20. Gaseous giants
b. Satellites
21. Asteroid belt
22. Comets
c. Motion
23. Kepler's Laws of motion
E. The Moon
24. Rotation and revolution
25. Phases
26. Eclipses
F. Atoms, Light and Spectra
27. How astronomers "see" the composition of stars
28. Electromagnetic spectrum
29. Elements and spectral lines
G. The Sun
30. Composition of our home star, one layer at a time
31. Fusion of the proton-proton chain
H. Our Milky Way and Galactic structure
32. Milky Way
33. Galactic classification
34. Galactic motion and distribution
I. Stars
35. Stellar Evolution
a. Main sequence stars
b. Giants
c. Dwaves and Neutron stars
36. Constellations
J. Black Holes and Relativity
37. Escape velocity and the limitation of light speed
38. Light cones and embedding diagrams
39. Mass to radius ratios
40. Space-time "warping"
41. Time dilation
42. Length contraction
K. Cosmology
43. Defining the "universe"
44. The nature of "space"
45. The nature of "time"
46. Expansion of the universe
47. Problems and proposed solutions

Lab Content:

1. Measurement
2. Our Place in the Universe
3. Dimensional Analysis
4. Moon Phases
5. Planets
6. Orbits
7. Gravity
8. Kepler's Laws
9. Solar System
10. Waves
11. Light
12. Spectroscopy
13. The Sun
14. H-R Diagrams
15. Galactic Model with salt
16. Stellar Evolution
17. Cosmology

V. APPROPRIATE READINGS

Reading assignments may include but are not limited to the following:

I. Sample Text Title:

1. Recommended - Bennett J, Donahue M, Schneider M, Voit M Cosmic Perspectives Fundamentals, ed. 1 Addison-Wesley, New York, 2010,
II. Other Readings

Global or international materials or concepts are appropriately included in this course
Multicultural materials and concepts are appropriately included in this course
If either line is checked, write a paragraph indicating specifically how global/international and/or multicultural materials and concepts relate to content outline and/or readings.

VI. METHODS TO MEASURE STUDENT ACHIEVEMENT AND DETERMINE GRADES:

Students in this course will be graded in at least one of the following four categories. Please check those appropriate. A degree applicable course must have a minimum of one response in category A, B, or C .

A. Writing

Check either 1 or 2 below
X 1. Substantial writing assignments are required. Check the appropriate boxes below and provide a written description in the space provided.
2. Substantial writing assignments are NOT required. If this box is checked leave this section blank. For degree applicable courses you must complete category B and/or C.

| X | a) essay exam(s) | X | d) written homework |
| :--- | :--- | :--- | :--- | :--- |
| | b) term or other paper(s) | | e) reading reports |
| X | c) laboratory report(s) | | f) other (specify) |

Required assignments may include but are not limited to the following:
Essay questions on the exams, written answers to laboratory questions, and homework assignments will require substantial writing.

B. Problem Solving

Computational or non-computational problem-solving demonstrations, including:

X	a) exam(s)	X	d) laboratory reports
X	b) quizzes		e) field work
X	c) homework problems		f) other (specify):

Required assignments may include but are not limited to the following:

There will be computational and non-computational problem solving during exams, quizzes, on homework assignments and on laboratory reports.

C. Skill demonstrations, including:		
	a) class performance(s)	
c) performance exams(s)		
	b) field work	

Required assignments may include but are not limited to the following:

D. Objective examinations including:			
$X X$	a) multiple choice	X	d) completion
X	b) true/false		e) other (specify):
X	c) matching items		

COURSE GRADE DETERMINATION:

Description/Explanation: Based on the categories checked in A-D, it is the recommendation of the department that the instructor's grading methods fall within the following departmental guidelines; however, the final method of grading is still at the discretion of the individual instructor. The instructor's syllabus must reflect the criteria by which the student's grade has been determined. (A minimum of five (5) grades must be recorded on the final roster.)

If several methods to measure student achievement are used, indicate here the approximate weight or percentage each has in determining student final grades.
Exams: 65\% Homework: 15\% Laboratory Reports: 10\% Participation: 10\%

VII. EdUCATIONAL MATERIALS

For degree applicable courses, the adopted texts, as listed in the college bookstore, or instructor-prepared materials have been certified to contain college-level materials.

Validation Language Level (check where applicable):	College-Level Criteria Met	
Textbook	YES	
Reference materials	$\frac{\mathrm{X}}{\mathrm{X}}$	
Instructor-prepared materials	-X	
Audio-visual materials	-X	

Indicate Method of evaluation:
Used readability formulae (grade level 10 or higher)
Text is used in a college-level course $\quad-\mathrm{X}$
Used grading provided by publisher
Other: (please explain; relate to Skills Levels)
Computation Level (Eligible for MATH 101 level or higher where applicable)
Content
Breadth of ideas covered clearly meets college-level learning objectives of this course
Presentation of content and/or exercises/projects:
Requires a variety of problem-solving strategies including inductive and deductive reasoning.
Requires independent thought and study
Applies transferring knowledge and skills appropriately and efficiently to new situations or problems.

List of Reading/Educational Materials
Recommended - Bennett J, Donahue M, Schneider M, Voit M Cosmic Perspectives Fundamentals, ed. 1 Addison-Wesley, New York, 2010, ISBN: 9780321566959

Comments:

	This course requires special or additional library materials (list attached). X
This course requires special facilities: Physics classroom	

Attached Files:

BASIC SKILLS ADVISORIES PAGE The skills listed are those needed for eligibility for English 125, 126, and Math 101. These skills are listed as the outcomes from English 252, 262, and Math 250. In the right hand column, list at least three major basic skills needed at the beginning of the target course and check off the corresponding basic skills listed at the left.
(eligibility for Math 101)
(as outcomes for Math 250)Performing the four arithmetic operations on whole numbers, arithmetic fractions, and decimal fractions. Making the conversions from arithmetic fractions to decimal fractions, from decimal fractions to percents, and then reversing the process. Applying the concepts listed above to proportions, percents, simple interest, markup and discount.
X__ Applying the operations of integers in solving simple equations.
X __ Converting between the metric and English measurement systems
(eligibility for English 126)
(as outcomes for English 262)
X
Using phonetic, structural, contextual, and dictionary skills to attack and understand words.
X Applying word analysis skills to reading in context. Using adequate basic functional vocabulary skills. Using textbook study skills and outlining skills. Using a full range of literal comprehension skills and basic analytical skills such as predicting, inferring, concluding, and evaluating.
(eligibility for English 125)
(as outcomes for English 252)
X
Writing complete English sentences and avoiding errors most of the time.Using the conventions of English writing: capitalization, punctuation, spelling, etc.
X Using verbs correctly in present, past, future, and present perfect tenses, and using the correct forms of common irregular verbs.
X Expanding and developing basic sentence structure with appropriate modification.Combining sentences using coordination, subordination, and phrases.
X__ Expressing the writer's ideas in short personal papers utilizing the writing process in their development.

Students will use:

1. the four arithmetic functions to complete homework assignments.
2. fraction to decimal conversions to complete homework assignments.
3. both the above listed, as well as the remaining math skills on examinations.

Students will use reading skills:
1 . while completing their homework assignments.
2. while performing the laboratory activities.
3. reading skills during examinations.

Students will use writing skills:

1. to complete their homework assignments.
2. to complete their laboratory activities.
3. during examinations.

Check the appropriate spaces.

_ X _ Eligibility for Math 101 is advisory for the target course.

- X - Eligibility for English 126 is advisory for the target course.
- X_ Eligibility for English 125 is advisory for the target course.

If the reviewers determine that an advisory or advisories in Basic Skills are all that are necessary for success in the target course, stop here, provide the required signatures, and forward this form to the department chair, the appropriate associate dean, and the curriculum committee.

REQUISITES

No requisites

