ERepdlay

CREDIT COURSE OUTLINE

I. COVER PAGE			
$\frac{\text { (1) CHEM } 10}{\text { Number }}$	(2) ELEMENTARY CHEMISTRY		

II. COURSE OUTCOMES:

(Specify the learning skills the student demonstrates through completing the course and link critical thinking skills to specific course content and objectives.)

Upon completion of this course, students will be able to:
A. Demonstrate a working knowledge of the periodic table in such ways as deriving inorganic chemical formulas and balanced chemical equations.
B. Write the name of inorganic and molecular compounds from the formulas.
C. Use dimensional analysis and stoichiometry to solve for an unknown parameter of density, volume, mass, pressure, temperature, molar mass and concentration.
D. Apply the definition of acids and bases and understand the concept of pH .
E. Understand basic safety procedures in the chemical laboratory and demonstrate laboratory skills in the use of the analytical balance, conducting experimentation and proper glassware handling.

III. COURSE OBJECTIVES:

(Specify major objectives in terms of the observable knowledge and/or skills to be attained.)

In the process of completing this course, students will:
A. Write correct symbols for the elements and using the Periodic Table write correct formulas for inorganic compounds.
B. Gain an understanding of how to identify molecular and ionic compounds and the specific bonding types that occur in these compounds.
C. Set up and balance chemical equations.
D. Gain an understanding of the mole and mass calculations using the stoichiometry in the balanced equation.
E. Identify molecular and ionic compounds.
F. Gain an understanding of what the ideal gas law and combined gas law is and how this can be used to calculate quantities for all the variables in the equation, such as pressure, volume, moles and temperature.
G. Identify the names and symbols and gain a working knowledge of the most common elements on the periodic table and demonstrate this in such ways as deriving inorganic chemical formulas and balanced chemical equations.
H. Learn to write the names of inorganic and molecular compounds and apply the basic rules for writing chemical formulas and demonstrate this by correctly naming and writing out chemical formulas.
I. Use dimensional analysis to convert from the English to the metric system for measurements that are common to chemistry such as mass, volume, formula weights, denisty, linear measurements and temperature.
J. Learn to balance chemical equations, and use both molecular and net ionic forms of the equation and use stoichiometry to predict quantities of products given reactant amounts.
K. Describe covalently bonded compounds using Lewis structures.
L. Apply the definition of acids and bases to the understanding of pH and acid related problems.
M. Demonstrate safe laboratory skills by using the laboratory equipement such as analytical balance, thermometer, and safely conducting direcected experimentation by the proper use of glassware and other lab equipement.

IV. COURSE OUTLINE:

Lecture Content:

A. An Introduction to Chemistry

1. History
2. Relationship with other Sciences
3. The Scientific Method
B. Standards for Measurement
4. Mass and Weight
5. Significant Figures
6. Rounding Off
7. Scientific Notation
8. The Metric System
9. Dimensional Analysis
10. Temperature and Volume Measurements
C. Classification of Matter
11. Physical States of Matter, Substances and Mixtures
12. Names and Symbols of the Important Elements
13. Metals, non-Metals and Metalloids
14. Compounds
D. Properties of Matter
15. Physical and Chemical Properties of Matter
16. Conservation of Mass.
17. Heat and Conservation of Energy
E. Early Atomic Theory and Structure
18. Dalton's Atomic Theory
19. Discovery of Ions
20. Subatomic Particles
21. Relationship between Atomic Number and Atomic Mass
F. Nomenclature of Inorganic Compounds
22. Common Names and Systematic Names
23. Binary and Ternary Compounds, Salts, Acids and Bases
G. Quantitative Composition of Compounds

1 The Mole Concept, and Molar Mass of Compounds
2. Percent Composition
3. Empirical Formula versus Molecular Formula
H. Chemical Equations.

1. Writing and Balancing Chemical Equation.
2. Types of Chemical Equations
3. Heat: Endothermic and Exothermic Reactions
I. Calculations from Chemical Equations
4. Introduction to Stoichiometry: the Mole-Mass Ratio Method
5. Limiting Reactant and Yield Calculations.
J. Chemical Bonds: The Formation of Compounds from Atoms
6. The Ionic Bond: Transfer from Electrons from one Atom to another
7. The Covalent Bond: Sharing of Electrons
8. Electro-negativity
9. Drawing Lewis Structures
K. The Gaseous State of Matter
10. General Properties of Gases
11. The Laws of Boyle, Charles, and Gay-Lussac
12. Standard Temperature and Pressure
13. Avogadro’s Law
L. Water and the Properties of Liquids
14. The structure of the Water Molecule
15. The Hydrogen Bond
M. Solutions.
16. Types and General Properties of Solutions
17. Factors related to Solubility
18. Concentration Calculations
N. Chemical Equilibrium
19. Rates of Reactions
20. The Principle of Le Chatelier
21. Effect of Catalysts, Temperature, and Pressure on Chemical Equilibrium

Lab Content:

A. Introduction to safety. safety agreement and safety quiz.
B. Instrumental measurements.
C. Physical properties and chemical properties of matter.
D. Families of elements.
E. Naming molecular and ionic compounds.
F. Empirical formulas of compounds.
G. Analysis of alum, a salt used as styptic.
H. Precipitating calcium phosphate
I. Molecular models, working with the molecular modeling box and understanding covalent bonding.
J. Analysis of salt water.
K. Generating hydrogen gas, an alternative fuel.
L. Analysis of vinegar.
M. Electrical conductivity of aqueous solutions.

V. APPROPRIATE READINGS

Reading assignments may include but are not limited to the following:

A. Sample Text Title:

1. Recommended - Zumdahl, S. Z., DeCoste, D. J. Introductory Chemistry: A Foundation, ed. Seventh Charles Hartford, 2010,
2. Recommended - Peters, Cracolice Introductory Chemistry, An Active Learning Approach, ed. 4th Thomson, Brooks/Cole, 2009,
3. Recommended - Hein \& Arena Foundations of College Chemistry, ed. 11th Wiley, 2004,
B. Other Readings
_ Global or international materials or concepts are appropriately included in this course
Multicultural materials and concepts are appropriately included in this course

If either line is checked, write a paragraph indicating specifically how global/international and/or multicultural materials and concepts relate to content outline and/or readings.

VI. METHODS TO MEASURE STUDENT ACHIEVEMENT AND DETERMINE GRADES:

Students in this course will be graded in at least one of the following four categories. Please check those appropriate. A degree applicable course must have a minimum of one response in category A, B, or C .

A. Writing

Check either 1 or 2 below
X 1. Substantial writing assignments are required. Check the appropriate boxes below and provide a written description in the space provided.
2. Substantial writing assignments are NOT required. If this box is checked leave this section blank. For degree applicable courses you must complete category B and/or C.

X	a) essay exam(s)	X	d) written homework
	b) term or other paper(s)		e) reading reports
X	c) laboratory report(s)		f) other (specify)

Required assignments may include but are not limited to the following:
Laboratory reports and essay questions on exams.

B. Problem Solving

Computational or non-computational problem-solving demonstrations, including:

X	a) exam(s)	X	d) laboratory reports
X	b) quizzes		e) field work
X	c) homework problems		f) other (specify):

Required assignments may include but are not limited to the following: Homework problems are assigned from the textbook.
C. Skill demonstrations, including:

	a) class performance(s)		c) performance exams(s)
	b) field work		d) other (specify)

Required assignments may include but are not limited to the following:

D. Objective examinations including:

X	a) multiple choice	X	d) completion
X	b) true/false		e) other (specify):
X	c) matching items		

COURSE GRADE DETERMINATION:

Description/Explanation: Based on the categories checked in A-D, it is the recommendation of the department that the instructor's grading methods fall within the following departmental guidelines; however, the final method of grading is still at the discretion of the individual instructor. The instructor's syllabus must reflect the criteria by which the student's grade has been determined. (A minimum of five (5) grades must be recorded on the final roster.)

If several methods to measure student achievement are used, indicate here the approximate weight or percentage each has in determining student final grades.
Exams (5) 45\% Final 15\% Quizzes, homework 10\% Participation 5\% Laboratory 25\%

VII. EDUCATIONAL MATERIALS

For degree applicable courses, the adopted texts, as listed in the college bookstore, or instructor-prepared materials have been certified to contain college-level materials.

Validation Language Level (check where applicable):

Textbook

Reference materials
Instructor-prepared materials
Audio-visual materials

Indicate Method of evaluation:
Used readability formulae (grade level 10 or higher)
Text is used in a college-level course Used grading provided by publisher Other: (please explain; relate to Skills Levels)

Computation Level (Eligible for MATH 101 level or higher where applicable)
Content
Breadth of ideas covered clearly meets college-level learning objectives of this course
Presentation of content and/or exercises/projects:
Requires a variety of problem-solving strategies including inductive and deductive reasoning.
Requires independent thought and study
Applies transferring knowledge and skills appropriately and efficiently to new situations or problems.
List of Reading/Educational Materials
Recommended - Zumdahl, S. Z., DeCoste, D. J. Introductory Chemistry: A Foundation, ed. Seventh Charles Hartford, 2010,
Recommended - Peters, Cracolice Introductory Chemistry, An Active Learning Approach, ed. 4th Thomson, Brooks/Cole, 2009, Recommended - Hein \& Arena Foundations of College Chemistry, ed. 11th Wiley, 2004,

Comments:

This course requires special or additional library materials (list attached).
This course requires special facilities:
Chemistry Lab
Attached Files:

BASIC SKILLS ADVISORIES PAGE The skills listed are those needed for eligibility for English 125, 126, and Math 101. These skills are listed as the outcomes from English 252, 262, and Math 250. In the right hand column, list at least three major basic skills needed at the beginning of the target course and check off the corresponding basic skills listed at the left.

CONTENT REVIEW

REQUISITES

Subject Advisory -- ENGL 1A READING AND COMPOSITION

- Write a documented research paper of at least 1000 words that includes:
- a sophisticated introduction, multiple body paragraphs,
- Gain an understanding of how to identify molecular and ionic compounds and the specific bonding types that occur in these compounds.
and conclusion
- a clearly defined, arguable thesis sentence
- Describe covalently bonded compounds using Lewis structures.
- Apply the definition of acids and bases to the understanding of pH and acid related problems.

ESTABLISHING PREREQUISITES OR COREQUISITES

Every prerequisite or corequisite requires content review plus justification of at least one of the seven kinds below. Prerequisite courses in communication and math outside of their disciplines require justification through statistical evidence. Kinds of justification that may establish a prerequisite are listed below.
Check one of the following that apply. Documentation may be attached.

1. \qquad The prerequisite/corequisite is required by law or government regulations.
Explain or cite regulation numbers:
2. \qquad The health or safety of the students in this course requires the prerequisite. Justification: Indicate how this is so.
3. \qquad The safety or equipment operation skills learned in the prerequisite course are required for the successful or safe completion of this course.
Justification: Indicate how this is so.
4. \qquad The prerequisite is required in order for the course to be accepted for transfer to the UC or CSU systems. Justification: Indicate how this is so.
5. ___ Significant statistical evidence indicates that the absence of the prerequisite course is related to unsatisfactory performance in the target course.
Justification: Cite the statistical evidence from the research.
6. __ X_ The prerequisite course is part of a sequence of courses within or across a discipline.

Chem 10 is a recommended prerequisite for chem 3A.
7. \qquad Three CSU/UC campuses require an equivalent prerequisite or corequisite for a course equivalent to the target course:

