CREDIT COURSE OUTLINE

I. COVER PAGE

(1) CHEM 3B
Number

(2) INTRODUCTORY ORGANIC AND BIOLOGICAL CHEMISTRY

(3) 3

Units

(12) Catalog Description:

Introduction to the basic concepts of organic and biological chemistry. A study of the structure and behavior of organic and biochemical compounds, including metabolism, and regulation. Primarily for students in health oriented professions.
II. COURSE OUTCOMES:
(Specify the learning skills the student demonstrates through completing the course and link critical thinking skills to specific course content and objectives.)

Upon completion of this course, students will be able to:
I. Demonstrate structural formula--name conversions for less complex organic and biochemical compounds.
II. Describe physical properties of organic compounds.
III. Predict products of representative chemical reactions.
IV. Understand basic concepts of biomolecules, such as carbohydrates, lipids, proteins, enzymes, and nucleic acids.
V. Safely demonstrate laboratory experiments involving basic organic chemistry and biochemical themes.

III. COURSE OBJECTIVES:

(Specify major objectives in terms of the observable knowledge and/or skills to be attained.)

In the process of completing this course, students will:
I. assess the process, products, and coenzymes in metabolic pathways.
II. describe different organic functional groups and major biological categories of compounds.
III. use (with safe procedures) laboratory equipment for simple organic chemistry and biochemical experiments.
IV. describe and discuss the procedures used in basic organic chemistry and biochemical experiments.
IV. COURSE OUTLINE:

Lecture Content:

A. Introduction to organic chemistry

1. Sources of organic compounds
2. Structure of organic compounds
3. Hybrid orbitals
B. Saturated hydrocarbons
4. IUPAC nomenclature
5. Cycloalkanes
6. Physical and chemical properties
7. Functional groups
C. Unsaturated hydrocarbons
8. Nomenclature
9. Hybridization and geometry
10. Physical and chemical properties
11. Addition polymers
D. Aromatic hydrocarbons
12. Nomenclature
13. Reactions of aromatic compounds
E. Halogenated hydrocarbons
14. Nomenclature
15. Alkyl and aryl halides
F. Alcohols, ethers, thiols
16. Nomenclature
17. Physical and chemical properties
18. Important alcohols
G. Aldehydes and ketones
19. Nomenclature
20. Physical and chemical properties
21. Preparation by oxidation
22. Important aldehydes and ketones
H. Carboxylic acids and esters
23. Nomenclature
24. Physical and chemical properties
25. Preparation and acidity of carboxylic acids
26. Hydrolysis of carboxylic esters
I. Amines and amides
27. Nomenclature
28. Physical and chemical properties
29. Preparation, hydrolysis and basicity of amines and quarternary salts
J. Stereoisomerism
K. Carbohydrates
30. Enantiomers and chirality
31. Saccharides
L. Lipids
32. Structure and properties of fats
33. Complex lipids and membranes
34. Cholesterol and hormones
M. Proteins
35. Amino acids
36. Zwitterions
37. Peptides and proteins
38. Primary, secondary and tertiary structure
39. Denaturation
N. Enzymes
40. Nomenclature, common terms and classification of enzymes
41. Factor affecting activity
42. Mechanisms
43. Enzyme regulation
O. Vitamins, hormones
P. Nucleic acids
44. Components of nucleic acids
45. Structure of DNA and RNA
46. DNA replication
47. RNA
48. Transcription of information
49. Genetic code
50. Genes and mutations, genetic diseases
Q. Carbohydrate metabolism
51. Nutrition, calories, and digestion
R. Lipid metabolism
52. Nutrition, calories, and digestion
S. Protein metabolism
53. Nutrition, calories, and digestion

Possible other topics: conversion of light energy to chemical energy, blood and blood components.

Lab Content:

A. Properties of organic compounds
B. Structure of alkanes
C. Reactions of hydrocarbons
D. Alcohols and phenols
E. Aldehydes and esters
F. Types of carbohydrates
G. Carboxylic acids and esters
H. Aspirin and other analgesics
I. Lipids
J. Saponification and soaps

V. APPROPRIATE READINGS

Reading assignments may include but are not limited to the following:

I. Sample Text Title:

1. Recommended - Karen C. Timberlake Chemistry: An Introduction to General, Organic, and Biological Chemistry, Media Update, ed. 10th Benjamin Cummings/Prentice Hall, 2009, ISBN: 0136079706
2. Recommended - Frederick Bettelheim Introduction to General, Organic, and Biochemistry, ed. 9 Brooks/Cole, 2010, ISBN: 0495391123
3. Recommended - Karen C. Timberlake Laboratory Manual for Organic and Biological Chemistry, ed. 2 Benjamin Cummings/Prentice Hall, 2011, ISBN: 0321695291
II. Other Readings

Global or international materials or concepts are appropriately included in this course Multicultural materials and concepts are appropriately included in this course

If either line is checked, write a paragraph indicating specifically how global/international and/or multicultural materials and concepts relate to content outline and/or readings.

VI. METHODS TO MEASURE STUDENT ACHIEVEMENT AND DETERMINE GRADES:

Students in this course will be graded in at least one of the following four categories. Please check those appropriate. A degree applicable course must have a minimum of one response in category A, B, or C .

A. Writing Check either 1 or 2 below			
X	1. Substantial writing assignments are required. Check the appropriate boxes below and provide a written description in the space provided.		
	2. Substantial writing assignments are NOT required. If this box is checked leave this section blank. For degree applicable courses you must complete category B and/or C.		
X	a) essay exam(s)	X	d) written homewo
	b) term or other paper(s)		e) reading reports
X	c) laboratory report(s)		f) other (specify)

Required assignments may include but are not limited to the following:

Students must write a report for every laboratory performed, and be able to write full answers and paragraphs for homework and exam questions. The student should also be able to write summaries of the required reading assignments.

B. Problem Solving

Computational or non-computational problem-solving demonstrations, including:

X	a) exam(s)	X	d) laboratory reports
X	b) quizzes		e) field work
X	c) homework problems		f) other (specify):

Required assignments may include but are not limited to the following:

The student needs to be able to draw chemical structures for formulas, identify functional groups, predict products for a reaction and explain why certain products are formed. During laboratory classes the students need to analyze their results.

C. Skill demonstrations, including:						
				a) class performance(s)		c) performance exams(s)
	b) field work	X				

Required assignments may include but are not limited to the following:

D. Objective examinations including:		
X	a) multiple choice	d) completion
X	b) true/false	e) other (specify):
X	c) matching items	

COURSE GRADE DETERMINATION:

Description/Explanation: Based on the categories checked in A-D, it is the recommendation of the department that the instructor's grading methods fall within the following departmental guidelines; however, the final method of grading is still at the discretion of the individual instructor. The instructor's syllabus must reflect the criteria by which the student's grade has been determined. (A minimum of five (5) grades must be recorded on the final roster.)

If several methods to measure student achievement are used, indicate here the approximate weight or percentage each has in determining student final grades.
Laboratory assignments 12.5% laboratory quizzes 12.5%, homework 10%, lecture quizzes and exams 65%.
Attached Files:

BASIC SKILLS ADVISORIES PAGE The skills listed are those needed for eligibility for English 125, 126, and Math 101. These skills are listed as the outcomes from English 252, 262, and Math 250. In the right hand column, list at least three major basic skills needed at the beginning of the target course and check off the corresponding basic skills listed at the left.
(eligibility for English 125)
(as outcomes for English 252)Writing complete English sentences and avoiding errors most of the time.
X__ Using the conventions of English writing:
capitalization,
punctuation, spelling, etc.
Using verbs correctly in present, past, future, and present perfect tenses, and using the correct forms of common irregular verbs.
Expanding and developing basic sentence structure with appropriate modification.
Combining sentences using coordination, subordination, and phrases.
X__ Expressing the writer's ideas in short personal papers utilizing the writing process in their development.
(eligibility for English 126)
(as outcomes for English 262)
X _ Using phonetic, structural, contextual, and dictionary skills to attack and understand words.
X__ Applying word analysis skills to reading in context.

- X Using adequate basic functional vocabulary skills.
- X_ Using textbook study skills and outlining skills.

X__ Using a full range of literal comprehension skills and basic analytical skills such as predicting, inferring, concluding, and evaluating.

Writing complete English sentences and avoiding errors most of the time.

Expressing the writer's ideas in lab reports.
Using the conventions of English Writing.

Applying word analysis skills to reading in context.
Using textbook study skills and outlining skills.
Using a full range of literal comprehension skills and basic analytical skills.

Check the appropriate spaces.

Eligibility for Math 101 is advisory for the target course.
Eligibility for English 126 is advisory for the target course.
Eligibility for English 125 is advisory for the target course.
If the reviewers determine that an advisorv or advisories in Basic Skills are all that are necessarv for success in the target course., stop here, provide the required signatures, and forward this form to the department chair, the appropriate associate dean, and the curriculum committee.

CONTENT REVIEW

CHEM 3A INTRODUCTORY GENERAL CHEMISTRY

CHEM 1A GENERAL CHEMISTRY

Competent knowledge of the periodic table, molecules, and compounds. Assessed from a pre-test administered at the beginning of the semester and the final exam administered at the end of the semester.

CHEM 1A GENERAL CHEMISTRY

CHEM 3A INTRODUCTORY GENERAL CHEMISTRY

REQUISITES

Subject Prerequisite -- CHEM 3A INTRODUCTORY GENERAL CHEMISTRY

- Use dimensional analysis to solve for an unknown parameter of density, volume, mass, pressure, temperature, molar mass, concentration, or an empirical formula.
- Construct and balance a chemical reaction and use the reaction to predict stoichiometric quantities.
- Competent knowledge and understanding of the periodic table and the ability use the periodic table to solve chemical problems.
- Understand acid-base reactions and how to calculate pH .
- Safely conduct laboratory experiments implementing concepts and principles learned in lecture.
- Name and draw Lewis diagrams of inorganic and molecular compounds from the formula and vice versa.

Subject Prerequisite -- CHEM 1A GENERAL CHEMISTRY

1. Use systematic nomenclature to name and classify chemical species. 2. Predict ionic and covalent bonding between species. 2. Describe covalently bonded structures using Lewis theory, valence bond theory (including hybrid orbitals), and molecular orbital theory of diatomic molecules. 9. Identify types of reactions, predict the outcomes of chemical reactions, and write and balance chemical reactions. 3. Effectively collect, record, and analyze experimental data, recognize the limitations of measurements and identify sources or error, and interpret experimental results and correlate experimental results with the appropriate theory.

ESTABLISHING PREREOUISITES OR COREOUISITES

Every prerequisite or corequisite requires content review plus justification of at least one of the seven kinds below. Prerequisite courses in communication and math outside of their disciplines require justification through statistical evidence. Kinds of justification that may establish a prerequisite are listed below.
Check one of the following that apply. Documentation may be attached.

1. ___ The prerequisite/corequisite is required by law or government regulations. Explain or cite regulation numbers:
2. __ X_ The health or safety of the students in this course requires the prerequisite. Justification: Indicate how this is so.
Lab technique is first learned in Chemistry 3A.
3. _ X_ The safety or equipment operation skills learned in the prerequisite course are required for the successful or safe completion of this course.
Justification: Indicate how this is so.
Lab technique is first learned in Chemistry 3A.
4. The prerequisite is required in order for the course to be accepted for transfer to the UC or CSU systems.
Justification: Indicate how this is so.
5. _ X__ Significant statistical evidence indicates that the absence of the prerequisite course is related to unsatisfactory performance in the target course.
Justification: Cite the statistical evidence from the research.
Chemistry 3 A is the introductory material to Chemistry 3B.
6. _ X_ The prerequisite course is part of a sequence of courses within or across a discipline.

Chemistry 3A is the introductory material to Chemistry 3B.
7. \qquad Three CSU/UC campuses require an equivalent prerequisite or corequisite for a course equivalent to the target course:

